The Baltimore Bridge Collapse—Another Case of a Failed Management System

By – Dr. IJ Arora

Can good management systems make organizations immune to disasters? The Baltimore bridge (or, more precisely, the Francis Scott Key Bridge) collapsed in 2023 because the container vessel MV Dali collided with it. This was a tragedy, perhaps caused by the failure of several management systems, the ship, the port, the state, and whoever else was involved.

The National Transportation Safety Board (NTSB) investigation is ongoing, and will no doubt look at the part played by MV Dali, its crew, and its operator. However, my thought is that MV Dali or other ships plying the waters should have, by simple statistical probability, been considered as risks by the authorities. Between the water channel, the high number of ships sailing in and out regularly, and the bridge itself, there was likely to be an collision someday. Perhaps it was not a matter of if, but when! Therefore, should the bridge have been better designed and made safer based on these known and appreciated risks? After all, not all accidents can be completely avoided, but each tragedy has lessons learned as responsive action. The lessons become the data that drives risk identification and trends, thus making the system proactive. I am sure the NTSB is considering all this. In the meantime, without going into the ongoing investigation, there would seem to be some basics which are common indications of systemic failures. Be it the Titan submersible, or the Boeing management system,  as a subject-matter experts in  process-based management systems, I see a common cause: the failure of the system to  deliver conforming products and services.

In this short article, I want to discuss this bridge collapse in the context of the management system, considering ISO 9001:2015 generically and the requirements of ISO 55001:2024—“Asset management—Vocabulary, overview and principles” specifically. ISO 55001 was first published in 2014. It was developed as a standalone standard for asset management, building upon the principles of ISO 9001 and other relevant standards.

Could simply designing a good system based on the standard have enabled the organization to better assess the associated risks? Perhaps they were assessed, and a bridge allision was considered an extremely low-probability occurrence. If that were the case, the discussion would be on prioritization of risks.

As of the time of this writing (September 2024), the investigation into the Baltimore bridge collapse is still ongoing, and the lawsuits are starting to fly. Although the exact cause of the collapse remains under investigation, we can consider several factors that might have contributed to the incident. MV Dali experienced a series of electrical blackouts before the allision. The implementation of the vessel’s safety management system (SMS, based on the ISM Code) could be a factor. The stability, age, and condition of the bridge are, I am sure, being investigated as a potential contributing factor. Then, there is always human element. There may have been errors on the part of the ship’s crew or the bridge’s operators. Was the SMS designed to support them in such a scenario? What factors may have caused operators at all levels to perhaps not follow requirements and mitigate the risks? The NTSB’s investigation will highlight a detailed analysis of the ship’s navigation systems, the bridge’s structural integrity, and the actions of the individuals involved in this tragedy. Their final report will provide a comprehensive understanding of the incident and may include recommendations to prevent similar occurrences in the future.

However, even at this stage we can agree that bridges in general are national assets. They are valuable infrastructure that provides essential services to communities. Although it is not publicly known whether the state of Maryland specifically implemented ISO 55001 for its bridges, the principles and practices outlined in this standard could have been beneficial in managing the risks associated with the Baltimore bridge. Through the implementation of this standard (and/or ISO 9001), the authorities could have performed:

  • Risk assessments. ISO 55001 requires organizations to conduct regular risk assessments to identify potential threats and vulnerabilities. A thorough assessment of the bridge’s condition, age, and traffic load could have helped identify potential risks and inform maintenance and repair decisions, as could have changes in procedures, protection of navigation channels, and so on.
  • Lifecycle management. The standard emphasizes the importance of managing assets throughout their entire lifecycle, from planning and acquisition to maintenance and disposal. By following ISO 55001, the state could have developed a comprehensive plan for the bridge’s maintenance, upgrades, and eventual replacement.
  • Performance measurements. ISO 55001 requires organizations to establish measurable objectives or key performance indicators (KPIs) to measure the effectiveness of their asset-management activities. This could have helped the state monitor the bridge’s condition and identify any signs of deterioration.
  • Continual improvement. The standard promotes a culture of continual improvement, encouraging organizations to learn from past experiences and make necessary adjustments to their asset-management practices.

It is impossible to say definitively whether ISO 55001 would have prevented the Baltimore bridge collapse. However, the principles and practices outlined in the standard could have helped to reduce the risk inherent in such incidents. By adopting a systematic and proactive approach to asset management, organizations can improve the reliability and safety of their infrastructure. A systematic study must go beyond what the MV Dali contributed to the Baltimore bridge collapse; it is also important to consider the broader context and the potential contributions of other factors:

  • Bridge design and maintenance. The age and condition of the bridge are likely to be factors in the investigation. Older infrastructure may be more susceptible to damage or failure, especially if it has not been adequately maintained or upgraded.
  • Vessel traffic. The frequency and intensity of vessel traffic in the area can also influence the risk of allisions. The bridge is in a busy shipping channel; therefore, the likelihood of incidents was higher.
  • Safety measures. The presence or absence of safety measures such as buoys, warning systems, or restricted areas can also affect the risk of allisions. This needs to be studied and are factors the authorities would know.
  • Human elements and factors. Errors on the part of both the ship’s crew and bridge operators can contribute to accidents. Factors such as fatigue, inexperience, or inadequate training may play a role. What led to these issues? Error proofing, mistake proofing, and failure mode and effects analysis (FMEA) are tools that could be part of the effective management system.

Let us therefore consider ISO 55001 and the relevant clauses of the standard which could apply to the collapse of the Baltimore bridge.

Clause 4—Context of the organization

  • Clause 4.1—Understanding the external context, such as the age of the bridge, traffic volume, and environmental factors, is crucial for risk assessment.
  • Clause 4.2—Identifying the needs and expectations of relevant interested parties, including the public, commuters, and regulatory bodies, is essential for effective asset management.

Clause 6—Planning

  • Clause 6.2.1—The bridge’s asset management plan should have included clear objectives for its maintenance, repair, and replacement.
  • Clause 6.2.2—Specific objectives related to safety, reliability, and cost-effectiveness should have been established.
  • Clause 6.2.3—Detailed planning for maintenance, inspections, and upgrades would have been necessary to ensure the bridge’s structural integrity.

Clause 7—Support

  • Clause 7.1—Adequate resources, including funding, personnel, and expertise, should have been allocated for bridge maintenance and inspection.
  • Clause 7.2—Ensuring that personnel involved in bridge management have the necessary competence and training is essential.
  • Clause 7.3—Raising awareness among all relevant stakeholders about the importance of bridge maintenance and safety is crucial.

Clause 8—Operation and maintenance

  • Clause 8.1—Regular inspections and monitoring of the bridge’s condition would have helped identify potential problems early on.
  • Clause 8.2—A well-defined maintenance schedule, including preventive and corrective maintenance, would have been necessary to address issues before they escalated.

Clause 9—Performance evaluation

  • Clause 9.1—Establishing KPIs to measure the bridge’s performance, such as safety records, traffic flow, and maintenance costs, would have provided valuable insights.
  • Clause 9.2—Regular monitoring and evaluation of these KPIs would have helped identify areas for improvement.

Clause 10—Improvement

  • Clause 10.2—The bridge’s management should have implemented a system for monitoring and measurement, including data collection and analysis.
  • Clause 10.3—Predictive maintenance techniques could have been used to identify potential failures before they occurred.

My objective in writing this article is help demonstrate that by applying the principles of a standard, be it generic ISO 9001 or a more specific standard (as in this case, the asset-management system standard ISO 55001) the organization (in this case the state of Maryland) could have strengthened its asset-management practices and potentially mitigated the risks associated with the Baltimore bridge collapse.

The above article was recently published in the Exemplar Global publication – ‘The Auditor’.

Excellence in Auditing Presented by Dr. IJ Arora for Exemplar Global

“How Auditing Helps Prevent Tragedy,” presented by Dr. IJ Arora with Wendy Edwards (Project Director of Exemplar Global) at the Exemplar Global’s Excellence in Auditing Expo!

Click the link here to understand the critical role auditing plays in averting potential disasters. Whether you’re in risk management, quality assurance, or simply interested in safety and security, this discussion offers valuable perspectives and actionable takeaways.

Link to the Presentation

Can Boeing Deliver a Long-Term Solution to their 737 MAX Problems?

Dr. IJ Arora

Boeing is in the spotlight again with its 737 MAX planes, which have already had a deeply troubled history. Customer focus (which is clause 5.1.2 of ISO 9001 and AS9100) seems to have been lost somewhere.

I have read several recent articles on these incidents as well as Peter Robison’s book Flying Blind: The 737 MAX Tragedy and the Fall of Boeing, all of which point to a worsening situation for Boeing. The public perception of this great American company, which has always been committed to top-class engineering and trusted products, is changing from one of respect to one of caution. Travelers are wondering, “Should I fly in a 737 MAX?”

Boeing and the aerospace industry in general have high standards for quality and product safety. In this article, I postulate whether a company’s quality management system can guarantee that nothing goes wrong for customers. Can it ensure perfection? If not, what are the alternatives—and why have one at all?

What happened and who is responsible?

For those not familiar with the 737 MAX incident in January, shortly after an Alaska Airlines flight departed from Portland, Oregon, a cabin door panel blew off. As investigations are still ongoing the causes have not yet been fully determined. Boeing also had a software issue on the 737 MAX, resulting in the crash of a Lion Air flight in 2018 and an Ethiopian Airways flight in 2019.

Here in the United States, the Federal Aviation Administration (FAA) plays a critical role in providing regulations to ensure flight safety, and also provides oversight of aircraft manufacturers, airports, and maintenance providers. In the case of the Alaska Airlines flight, it seems that the FAA failed to uphold its trusted role. The FAA’s numerous checks and balances, most of which are intended to focus on customer safety, were like aligning holes in slices of Swiss cheese. It will be interesting to see what changes this incident brings about at the FAA. Then again, can regulatory oversight guarantee safety of flight?

The AS9100 standard, which is specific to the aerospace industry, isn’t the brainchild of a single entity, but rather a collaborative effort driven by two key players:

  1. The International Aerospace Quality Group (IAQG). This international organization brings together representatives from aviation, space, and defense companies across the Americas, Asia/Pacific, and Europe. They actively participate in developing, maintaining, and updating the AS9100 standard.
  2. Standardization organizations. These bodies, such as the Society of Automotive Engineers (SAE) in the Americas and the European Association of Aerospace Industries (now the AeroSpace and Defence Industries Association of Europe), officially publish and distribute the standard.

It is important to note that AS9100 builds upon the foundation of the more general ISO 9001 quality management system standard. While ISO 9001 lays the basic framework, the IAQG adds industry-specific requirements crucial for ensuring safety and quality in the aerospace domain.

In addition to the manufacturer and the FAA, the owner/lessor of the aircraft also plays a role in ensuring the plane is properly maintained. This includes selecting a competent maintenance provider, hiring competent engineers, and having robust processes in place. With so many different stakeholders, can blame be attributed to just one when accidents happen? Furthermore, should blame be the name of the game? Perhaps not! It is important to note that the system is implemented to support each user and that all stakeholders in the value chain play their part as well.

Audits, inspections, and management systems: Are these the solution?

Behind every tragedy, casualty, and mishap is a chain of related events. The immediate suspect when these types of critical failures occur are poor inspection protocols, perhaps even the dreaded “human error.” However, this may be the low-hanging fruit and a deeper dive may identify other causal factors, such as asking if the quality audit failed.

What is the difference between an audit and an inspection? Can they replace each other or are inspections alone enough? The simple answer is no! Both are needed due to fundamental differences in approach. Audits look at the processes to ensure the management system produces conforming products and services. An efficient management system must include the following, to name a few:

  • It must be well-defined, starting with the “as-is” state of the system.
  • Risks must be identified (clause 6.1) based on the context of the organization (clauses 4.1 and 4.2).
  • A clear definition of the product must be identified.
  • Effective audits and periodic review must be undertaken by management.
  • Outsourced processes must be controlled.

Inspections play an important role by identifying defects prior to release, thus protecting not only the client/customer/user/warfighter, etc., but also the reputation of the organization itself. With that said, inspections don’t contribute to continual improvement because they focus on fixes as opposed to long-term solutions. In effect, they do not really add value since the organization has already incurred the cost of producing the defective part or product. The creators of the Toyota Production System (i.e., lean) came up with the Andon process to catch a defect as early in the process as possible so as to fix it before the problem went too far down the line.

Management systems are not just a collection of documents. To function properly, they require commitment at all levels of the organization, including top management providing the needed resources. It takes time to build a culture of quality in which shortcuts are avoided and there is no fear of speaking up. Customer focus must not be compromised. For example, release of conforming product should go through the process specifically called out by clause 8.6; any interference by top management to truncate this process would imply the loss of customer focus. Is this a possibility? Perhaps, but the investigation must reveal the truth. In this case of the Alaska Air incident both the Boeing customers and Boeing as a company have suffered. It is my hope that investigators will identify all failed parts of the system from each responsible party. These may include not only failed inspections, but also suboptimal processes. This could end up taking us back to an inadequate quality management system.

Quality management systems: Can they deliver?

Given the above, can a properly designed and well-audited management system (supported by good inspection techniques to help ensure conforming product) guarantee that nothing goes wrong with an organization’s output? My opinion is that no one can guarantee this completely. However, risk can certainly be greatly reduced when everything is implemented well. This includes the training of personnel, which correlates strongly to competence; unfortunately, this is often the first budget to get cut when resources are scarce.

When high-visibility incidents like these occur, it may be forgotten that airplanes remain the statistically safest mode of travel on earth. This is primarily due to robust quality management systems, well-adopted regulatory frameworks, and regular oversight. Humans play an important role in the success of the management system, from the commitment at the top to the buy-in by the workforce (clause 5 to clauses 7.1.3, 7.1.4, and 10.3). Taken together, this helps create an environment where quality can flourish within the organization.

Boeing may be doing a lot correctly, and yet the results could be unacceptable depending on the performance of outsourced processes (clauses 8.41/8.4.2/8.4.3). After all, the fuselages for the 737 MAX are made by Spirit AeroSystems Holdings Inc. Spirit AeroSystems is located in Wichita, Kansas; once these fuselages are manufactured, they are shipped by rail to Boeing’s facility in Renton, Washington. Therefore, not only is a major component of the 737 MAX outsourced, but the shipping and preservation of product (clause 8.5.4) also could contribute to the product’s nonconformity. Overall, Boeing remains responsible for the entire supply chain (clause 4.3), with their obligation to “ensure conformity of its products and services and the enhancement of customer satisfaction.”

Even with a solid quality management system in place, this or similar failures can occur. There is no way to assure the public of 100-percent performing (i.e., perfect) output. The fear in the minds of air travelers is valid and will remain so until an exhaustive root cause analysis of this issue is performed and those root causes are resolved. The current events beg the question: Did Boeing improve their management system after the Ethiopian Airlines 737 MAX crash? If they had bent to the oars and gone deep into their review to uncover and permanently fix the holes in their management system, this event may never have occurred. Surface corrections, or what some organizations call “fix -it” solutions, only remove the symptoms. The root causes must be addressed and resolved (clause 10.2.1). There are no shortcuts to quality.

In conclusion

It has taken years for air travelers to feel safe and unconcerned about air safety. I travel a lot internationally, and often pick an airline based on their service and comfort, but now I (as well as the broader public, I would imagine) need to consider which aircraft will transport us. It is a new fear about product safety that has its genesis in Boeing not operating its management system efficiently and losing customer focus. The worst is the erosion of public confidence in federal oversight and its intent to keep the customer safe.

I have spent my life studying similar complex problems and leading teams in helping organizations find long-term sustainable solutions. This requires bold and dynamic leadership (clauses 5.3 and 5.1) for leaders to plan and implement change. Appreciating and accepting risks (i.e., keeping the customer in focus) and moving forward is integral to true leadership. Ethics is still not a clause of ISO 9001 and AS9100, but ethical leadership is about doing the correct thing for all stakeholders.

In seminars at which I present, I often ask senior managers: “If you have a choice between following the procedure and/or doing the correct thing, what would you do as a leader?” The answer—I hope—is to do the correct thing at all times. But then, hope is not a plan. Air safety cannot be based on hope and faith. Boeing needs the leadership to redesign their system if they are to bring the public trust back for this great American company.

Hyperlink to the thing characteristic in Exemplar International e-newsletter – “The Auditor”

10 Steps to Safeguard Maritime Property from Cybersecurity Threats

IJ Arora, Ph.D

Cybersecurity threats have become a pressing concern in the modern era due to our lives becoming increasingly dependent on computerization. However, with the convenience of technology comes vulnerability to malicious attacks. The maritime industry, with a growing reliance on technology, faces significant cybersecurity threats. Dr. Jekyll and Mr. Hyde (i.e., good and bad) exist and have always existed. Protecting against cyberattacks is crucial to ensuring the industry’s stability and security.

Understanding cybersecurity in the maritime industry

Cybersecurity in the maritime sector involves safeguarding systems, information, and assets from unauthorized access, disruptions, or manipulations. The industry’s growing reliance on technology, including networks controlling essential functions like navigation and communication, makes it an attractive target for cybercriminals. To maintain business continuity, it is crucial that companies assess their current cybersecurity posture and act to proactively improve it. The maritime industry supports trade and the economy at large, so a cyberattack can have broader consequences beyond just affecting a single vessel or company. For this reason, the intent of the attackers might be broader than simply affecting a specific entity for ransom.

Current challenges in maritime cybersecurity

Before delving into the 10 essential steps to fortify against cyberthreats, it’s crucial to acknowledge the prevalent challenges faced by the maritime industry, which include:

  • Business continuity disruption due to breaches
  • Lack of comprehensive response plans
  • Growing reliance on automation
  • Insufficient awareness
  • Vulnerabilities in cloud computing
  • Rise in phishing and social engineering attacks
  • Internal threats and attacks

Controlling both information technology and operational technology systems is critical to fortifying cybersecurity. Various systems within the small passenger-vessel sector are susceptible to cyberthreats, including bridge systems, access control systems, passenger servicing and management systems, and communication systems.

The 10 steps

When addressing cybersecurity, organizations must consider protecting information itself as well as the asset on which that information is stored. Control of both information technology (IT) and operational technology (OT) systems is critical to fortifying cybersecurity. Additionally, management must consider the confidentiality, integrity, and availability of information and how these three aspects may potentially be compromised.

Step 1: Leadership commitment

Leaders must drive the need for cybersecurity and ensure that it is baked in (not buttoned on) to processes. They need to engage the workforce to contribute to the system. To do this, they can:

  • Appoint a cybersecurity manager to ensure accountability and garner buy-in.
  • Make cybersecurity integral to business processes and consider risks vs. rewards.

Step 2: Use a system framework

Employ the plan, do, check, act (PDCA) cycle as the foundation for a robust cybersecurity approach. This is also the approach prescribed by the Passenger Vessel Association (PVA) safety management system (SMS) framework.

  • Develop and regularly update cybersecurity policies aligning with organizational needs and threat landscape changes.
  • Identify clear roles and responsibilities for all concerned with cybersecurity aspects of the SMS.

Step 3: Contextualize risk

  • Consider the broader context of operations, trade patterns, technology, and legislative factors.
  • Identify stakeholders, online networks, assets, critical components, and business-sensitive information.

Step 4: Risk assessment (3D framework)

Leaving hazards in uncertain states is a drawback for proper risk assessment. It is the responsibility of leadership to convert uncertainty into clearly defined risks within the context of the organization and then prioritize those risks.

  • Organizations must assess hazards in terms of probability, severity, and the likelihood of detection.
  • Risks should be prioritized with consideration given toward confidentiality, integrity, and the availability of information.

Step 5: Build controls into processes

Controls can be split into various categories, including administrative, physical, human, and technological. In some cases one control may suffice, but for the most part a combination of controls must be applied. Identified controls should be implemented based on the feasibility rule, meaning that although they may look good in a vacuum, ease of implementation must be considered. Information security should be a part of everything the organization does—not an add-on. This includes:

  • Implementing technical security controls like firewalls and intrusion-detection systems.
  • Adopting a layered security approach (i.e., “defense in depth”) to effectively mitigate against various threats. This entails creating multiple barriers to prevent access to information—physical, passwords, firewalls, VPNs etc.

Step 6: Maintain basic measures

Basic safety measures are easy to implement and, for the most part, they are cost-effective. This can include cybersecurity awareness training for personnel, physical security, and password security. Below are a few more, although this is not an exhaustive list:

  • Keep hardware and software updated.
  • Enable automated antivirus and anti-malware updates.
  • Limit administrator privileges and control removable media.
  • Avoid public network connections without a VPN.
  • Regularly backup and test information-restoration capabilities.

Step 7: Employee awareness

It is important to make employees aware of the need for good cybersecurity protocols. Employees are often the weakest link in the security chain. Statistics show that almost 36 percent of data breaches are caused by employee negligence. Immediate actions organization can take include:

  • Educate employees on cybersecurity best practices to minimize human error.
  • Train personnel to identify phishing attacks and report incidents promptly.

Step 8: Emergency preparedness

No organization is immune to cyberattacks. It is important to have a plan in place for responding to attacks quickly and effectively. The plan should include steps for mitigating the damage, containing the attack, and investigating the incident. You can use ISO 22301: 2019, “Business continuity,” to develop this plan.

  • Your plan should include comprehensive processes for responding to cyberattacks swiftly and efficiently, including reporting mechanisms.
  • Test and improve your business continuity plan regularly.

Step 9: Assess effectiveness

The check stage of the PDCA cycle is vital to instill confidence in the effectiveness of the organization’s cybersecurity measures.

  • Conduct regular cybersecurity assessments, including third-party evaluations for objectivity.
  • Evaluate assets, vulnerabilities, IT/OT risks, physical access, and breach potentials.

Step 10: Continual improvement

  • Embrace continual improvement through the PDCA cycle to maintain vigilance.
  • Invest in training personnel on cybersecurity standards like ISO 27001.

Conclusion

Taking cybersecurity seriously and implementing these 10 steps can significantly mitigate the risk of cyberattacks. Begin the process by conducting a gap assessment using a qualified person to assess where your system currently stands and what actions need to be taken.

Your action plan should identify risks, gaps, and the controls needed. These controls can easily be integrated into the existing safety management system. Investing in cybersecurity today will better prepare your organization to manage future risks. Leadership involvement is crucial, and these steps serve as a solid foundation to effectively fortify cybersecurity measures.

About the author

Inderjit (IJ) Arora, Ph.D., is the President and CEO of QMII. He serves as a team leader for consulting, advising, auditing, and training regarding management systems. He has conducted many courses for the United States Coast Guard and is a popular speaker at several universities and forums on management systems. Arora is a Master Mariner who holds a Ph.D., a master’s degree, an MBA, and has a 33-year record of achievement in the military, mercantile marine, and civilian industry.

Above article is featured in the following:-

Foghorn Magazine

Exemplar Global Publication “The Auditor”

Controlling Sub-Sea Infrastructure


The recent implosion of the Titan, a sub-sea submersible used for taking elite, high-paying tourists to see the wreck of the Titanic, brought the safety protocols of both vessels into focus. There were no statutory requirements for regulating the Titan and neither were there any when the Titanic sank in 1912! As a reactive measure, the maritime community came up with the Safety of Life at Sea (SOLAS) Convention soon after the sinking of the Titanic. Ironically, after the Titan submersible imploded, we have come to realize there are no requirements covering this vessel. Perhaps with time, the involved counties will react.

The question is, why was nothing done proactively? Tourists go up in hot air balloons all the time. Is there any statutory requirement that these tourist companies must meet? Is there even a requirement to have a management system in place so that these companies work systematically, appreciate the risks in the context of the organization, and plan their operations keeping risks in mind? It is true that entrepreneurs do not like regulations and consider requirements a hindrance in a free business environment. And yet the Titanic, which was declared to be “unsinkable,” did, in fact, sink! In the United States, the domestic towing vessel industry functioned without statutory requirements until recently. The industry avoided regulation, but tragedies occurred, and now the industry is regulated under the U.S. regulatory framework. A process-based management system is the best systematic structure to produce conforming products and services, ensure continual improvement, and implement the statutory requirements if available.

The intent of this article is to proactively start a discussion on the need for regulating sub-sea infrastructure to reduce its affect on the marine transportation system. The phrase “sub-sea infrastructure” refers to equipment and technology placed on or anchored to the ocean floor. This infrastructure may include, but is not limited to, cables for telecommunication, cables for power transmission, pipelines for transmission of fluids, and other stationary equipment for scientific research.

The growth of sub-sea infrastructure is a global phenomenon. As an example, is in the interest of all nations, and particularly here in United States, to promote wind farms, which are a source of renewable energy. When these wind farms are placed in selected geographical locations along the continental shelf, they need sub-sea cables. But are there any laws controlling the systematic development of the industry to enable an effective marine transportation system and its protection of maritime community interests and environmental interests? Is there a central agency responsible for this coordination to allow for a balanced approach to risks? The amount of cabling piling up needs management and oversight.

Sub-sea infrastructure, the definition of the problem

Numerous industries have a stake in sub-sea infrastructure. Examples include oil and gas, telecommunications, fishing, scientific research, and perhaps military/defense applications such as sonar and other arrays and obstacles. This infrastructure is a requirement, but it also faces various challenges including those that can lead to accidents, environmental damage, and possible breaches in national security. All these bring out very significant concerns related to sub-sea infrastructure and the lack of comprehensive and globally accepted standards, requirements, obligations, and assurance mechanisms. It is not that organizations such as the United States Coast Guard, the National Oceanic and Atmospheric Administration, the Bureau of Safety and Environmental Enforcement, the U.S. Army Corps of Engineers, the Environmental Protection Agency, and other federal and state agencies do not look at these issues.

Nevertheless, it remains a concern that there is no single agency or overarching requirement to provide a framework to the industry on harmonized implementation of requirements. This lack of harmonization can mean inconsistencies in design, installation, and maintenance practices which may not address risks uniformly. This can generate consequential risks, leading to increased accidents, mechanical failures, and costs to the industry and the nation.

Recent tragedies and accidents

Recent tragedies and accidents involving sub-sea infrastructure have been limited, and yet must not lead to complacency by the agencies involved. The few that have occurred indicate the challenges and trends pointing to the need for proactive requirements. The recent tragedies include:

  • Deepwater Horizon. The potential consequences and challenges inherent in deep-water oil drilling were brought out by the Deepwater Horizon tragedy in 2010. The oil rig explosion in the Gulf of Mexico caused a massive oil spill and resulted in the loss of 11 lives. Although not technically a sub-sea incident, it highlighted a series of failures in design, maintenance, and company oversight—all factors pointing to the importance of robust safety standards and requirements, and the implementation thereof. The Deepwater Horizon incident was not directly related to sub-sea infrastructure; however, it heightened the risks associated with offshore oil and gas production and the potential for catastrophic environmental damage.
  • Nord Stream 1 and Nord Stream 2. Occurring in September 2022, the damage to these gas pipelines in the Baltic Sea highlighted concerns around sub-sea infrastructure. These pipelines transport natural gas from Russia to Europe; in this incident, they sustained multiple leaks. The exact cause of the damage is unclear, though deliberate sabotage was suspected and is still under investigation. Regardless of the ultimate findings, this incident exposed the vulnerabilities of sub-sea infrastructure to sabotage, and the potential for significant environmental and economic consequences are real. Intentional attacks to the sub-sea infrastructure have the potential for widespread disruption of energy supplies. Apart from the Nord Stream, there have been other sub-sea incidents affecting the gas and oil industry. In 2021 a fire broke out on a sub-sea production control umbilical off the coast of Brazil, causing significant damage to the underwater equipment and resulting in a major oil spill.
  • English Channel Internet Disruption. In 2021, a ship dragging its anchor on the seabed in the English Channel cut the three main internet cables to the Channel Islands. Although this only resulted in slower broadband speeds in this instance, there remains the possibility that it could have resulted in a complete outage.

Looking ahead

These incidents represent leading indicators of a tragedy in the making should proactive action not be taken. The critical importance of safety for sub-sea infrastructure underscores the need for a more comprehensive and rigorous approach to standards and assurance. Industry stakeholders together with regulatory bodies within the United States and global organizations such as the International Maritime Organization must work together to establish a harmonized set of safety standards, implement robust assurance mechanisms, and foster a culture of safety throughout the sub-sea industry.

The increasing reliance on sub-sea infrastructure for various industries (including wind farms) necessitates a proactive approach to safety and risk management. There is definitely a need to invest in research and development to enhance the resilience and monitoring capability of sub-sea infrastructure. The various companies in the sub-sea industry are holding their proprietary information close to the vest. This is understandable. However, these organizations are in competition with totalitarian governments, in which control of business practices is the exclusive dominion of the state. It is necessary to enhance transparency and information-sharing among industry stakeholders to facilitate better risk assessment and incident prevention.

Conclusion

Promoting a culture of safety that prioritizes risk identification, risk mitigation, and continual improvement is essential. There is no common ISO standard for sub-sea management systems. Of course, ISO 9001 is interpretable and can be used as the basis for now. Environmental protection is a challenge for a developing industry, and as such, even greater urgency is needed for statutory requirements encompassing all aspects of stakeholder interests, the marine industry in general, and the protection of the environment for generations to come.

Marine transportation remains the most important way for goods to be shipped across the world, as approximately 80 percent of the world’s goods are transported by ships. Vessels need a place to anchor in normal operating conditions as also in emergencies. A crowded seabed in harbors makes this a challenge for the entire maritime industry.

Without adequate and effective regulatory oversight, it may be too late to take action once cables and other sub-sea equipment have already been laid. Further, multiple agencies regulating the same aspects of the industry can potentially lead to bureaucratic delays.  There is therefore an urgent need to create a single statutory body to regulate the sub-sea infrastructure industry, which will greatly benefit all parties invested in the maritime transportation system.

Exemplar Global Publication “The Auditor”

Looking Ahead at ISO 9001

ISO 9001 has proactively kept up with various industry expectations, over the years, to allow

application by a broad spectrum of industry including the defense forces. The 2015 revision was

a thoughtfully planned giant step. It defined risk (ISO 9001 Clause 6.1) in the context of the

organization (ISO 9001 Clause 4.1 & 4.2) and removed exclusions provision from certification by

redefining what an organization does not do or outsources in the scope (ISO 9001 Clause 4.3). It

also removed preventive action, a reactive concept, and introduced proactive risk appreciation

(Clause 6.1 of ISO 9001 & Clause 8.1 in industry specific standards as AS9100).

This took preventive action from the delayed “Act” stage of the PDCA (Plan-Do-Check-Act) stage

to the more logical sensible “Plan” stage. After all, “look before you leap”, as the historical

fundamental, could not be left as a preventive action decision. It had to be at the look – plan

stage! Risk also needed not just mitigation, but also acted as an input, to be used to bring in

innovation in terms of OFI (opportunity for improvement).

These were all positive steps in keeping with technical advancements and computerization and

AI (artificial intelligence) tools. The HLS (high level structure), later updated to HS (harmonized

structure), recognized the need to enable ease of implementation of integrated management

systems. This in turn leading to efficiency, ROI (return on investment) and where applicable

environmental protection, security of the global supply chain, business continuity, cyber

security and health and safety.

The differentiating of knowledge (ISO 9001 Clause 7.6) from competence (ISO 9001 Clause 7.2)

was also a clever needed change. Organizations needed to define their corporate knowledge

aspects and differentiate it from the individual knowledge of personnel. Knowledge and

competence needed merging and a healthy marriage but needed recognition that they were

different. Removal of the reference to Quality Manager (QM) and Quality Manual from the

standard, took away the narrowness of thinking in quality, and brought the clarity to leadership

to remain accountable and to differentiate authority delegation from retaining the

accountability.

I am a member of the TAG-176 group, and yet have not really contributed much to the next

expected changes to ISO 9001. I am sure the TC-176 is working on this. Nevertheless, it is time

to debate and consider updating the standard.

Since the 2015 version was a major fundamental change, I doubt there would be a significant

departure from this 2015 version in the next major update. Unlikely that the next version may

have revolutionary updates. The emphasis, I think would be to clarify and strengthen the

present thoughts in the 2015 version. I would consider the following:

1. Two Standard Concept: I have over the years thought about the two prongs:

manufacturing and service, approach. Both the service and the manufacturing industry

have been using the standard. Some may consider the need for a separate

manufacturing and a service standard as the next step. However, over the years I have

feared too much bureaucracy which the two standards approach brings. I think the two

standard approaches may actually cause more issues than to resolve them. Might I

opine that Clauses under 8.3 for D&D can, if needed, be strengthened, clarified or more

useful notes as applicable to service version incorporated to assist implementers,

consultants and auditors?

2. Risk be better defined and OFI be clarified, to avoid auditors using it as a tool to sneak in

recommendations. OFI is the outcome of considering risk as an input for innovation. It is

not a recommendation.

3. The knowledge clause needs meat to strengthen it, and to better make it inclusive to

systematizing the requirements for organizations to systematize lessons learnt.

4. An annex added to bring clarity and ease to designing and implementing a combined

management system for an organization.

5. Clause 4.3 Scope, in defining scope requires consideration of the context of the

organization, which is based on Clauses 4.1 and 4.2. However, while the scope has to be

available as documented, 4.1 and 4.2 do not require documentation. I would suggest

both clauses 4.1 & 4.2 to have context as a documented requirement.

In conclusion, I think, updating the standard ground up is not a wise idea at this stage. Perhaps

slight tweaking to include some minor changes would give stability in implementation of an

already robust standard.

Implementing Safety Management Systems for Passenger Vessels

PV SMS White Paper – FinalExcerpt below is from White Paper by ‘Implementing Safety Management Systems for Passenger Vessels’ by Dr. Inderjit (IJ) Arora (QMII), Julius Desilva (QMII) and Captain Lee Boone (USCG, Retired). To continue reading the paper click on link in text.

INTRODUCTION

All too often, major accidents are the catalyst for change in the maritime industry. Evidence of this is seen in the development and implementation of maritime conventions and codes in existence today. The International Safety Management (ISM) Code, the result of such a catalyst, was meant to change this reactive nature. The ISM Code intended to promote a safety culture wherein risks are properly considered, work is effectively planned, personal accountability is enhanced, and operations are continually improved.

Unfortunately, this target was missed in many cases and a pervasive by-product called compliance culture set in, wherein the system achieves the minimum and only to satisfy regulators. The maritime industry and regulators learned much from this experience. We know now that if the true value of safety management systems (SMS) is not realized, further implementation efforts become self-defeating. This leads to even more than normal resistance from many who have seen colleagues, shipmates and competitors negatively impacted. A carefully planned implementation strategy expanding the use of safety management systems (SMS) to domestic passenger vessels should therefore be executed to avoid these pitfalls. As Safety Management Systems for domestic passenger vessels are intended in the same way as those for SOLAS1 vessels, we must apply lessons that have been learned from similar regulatory efforts.

In this paper, recommendations are made for implementing SMSs for domestic passenger vessels (PV) based on the concepts of incentives, scalability, and collective use of resources. When implemented in the right way and for the right reasons, the value that SMSs offer passenger vessel owner/operators is maximized, while the cost of implementation is minimized.

BACKGROUND – RESISTANCE TO CHANGE

Looking at the data from the 1980’s to date, one would expect to see a decline in marine casualties starting in 1998 when the ISM code’s first compliance deadline came into effect. Initially the data shows a downward trend for a few years and then a spike starting in 2001. Those resisting change brought about by the ISM code would argue that the code had not delivered any improvements. However, the upward trend peaked in 2008 and has since seen a decline.

When a new management system is put in place, irrespective of industry, the first sign of success albeit non-intuitive, is a spike in accidents, incidents and hazardous occurrences. This leading indicator should be accepted as a positive as it demonstrates that the personnel within the system have started reporting non-conformities that went unreported before. This reporting enables corrective action to be taken in a systematic manner to prevent a similar non-conformity from occurring again.

To continue reading click here.